Multiprotocol MR image segmentation in multiple sclerosis: experience with over 1,000 studies.

نویسندگان

  • J K Udupa
  • L G Nyúl
  • Y Ge
  • R I Grossman
چکیده

RATIONALE AND OBJECTIVES Multiple sclerosis (MS) is an acquired disease of the central nervous system. Several clinical measures are commonly used to express the severity of the disease, including the Expanded Disability Status Scale and the ambulation index. These measures are subjective and may be difficult to reproduce. The aim of this research is to investigate the possibility of developing more objective measures derived from MR imaging. MATERIALS AND METHODS Various magnetic resonance (MR) imaging protocols are being investigated for the study of MS. Seeking to replace the Expanded Disability Status Scale and ambulation index with an objective means to assess the natural course of the disease and its response to therapy, the authors have developed multiprotocol MR image segmentation methods based on fuzzy connectedness to quantify both macrosopic features of the disease (lesions, gray matter, white matter, cerebrospinal fluid, and brain parenchyma) and the microscopic appearance of diseased white matter. Over 1,000 studies have been processed to date. RESULTS By far the strongest correlations with the clinical measures were demonstrated by the magnetization transfer ratio histogram parameters obtained for the various segmented tissue regions. These findings emphasize the importance of considering the microscopic and diffuse nature of the disease in the individual tissue regions. Brain parenchymal volume also demonstrated a strong correlation with clinical measures, which suggests that brain atrophy is an important disease indicator. CONCLUSION Fuzzy connectedness is a viable, highly reproducible segmentation method for studying MS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation

Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...

متن کامل

Watershed based Detection of Multiple Sclerosis Lesions in MR Images

In this work an automatic method to discover multiple sclerosis (MS) lesions is presented. The technique makes use of an original implementation of the watershed based hierarchical segmentation algorithm applied to Magnetic Resonance (MR) images of the brain. The hierarchical approach is needed because of its merging phase where lesions are isolated from the over-segmented image produced by wat...

متن کامل

Segmentation of Multide Sclerosis Lesions

AbstructTo segment brain tissues in magnetic resonance images of the brain, we have implemented a stochastic relaxation method which utilizes partial volume analysis for every brain voxel, and operates on fully three-dimensional (3-D) data. However, there are still problems with automatically or semi-automatically segmenting thick magnetic resonance (MR) slices, particularly when trying to segm...

متن کامل

An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...

متن کامل

P9: Cervical Spinal Cord Extraction in Patients with Multiple Sclerosis Using Magnetic Resonance Imaging for Measuring Cross-Sectional Area

Multiple sclerosis (MS) refers to the lesions that accumulate in the brain and spinal cord. Magnetic resonance imaging (MRI) is the most sensitive and versatile modality used to show changes in the tissues over time. There has been significant interest in evaluating the relationship between the brain atrophy and disease progression rather than the spinal cord atrophy. The cervical spinal cord h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Academic radiology

دوره 8 11  شماره 

صفحات  -

تاریخ انتشار 2001